Abstract

Using combined neutron spectroscopy and first-principles calculations, we investigated the electronic structure and vibrational dynamics of the recently discovered class of ternary hydrides Li4Tt2H (Tt=Si and Ge). In these compounds, all hydrogen atoms are located in a single type of Li6-defined octahedral site. The Tt atoms form long-range Tt-Tt chains sandwiched between each Li6-octahedra layer. The Li-H interactions are strongly ionic, with bond lengths comparable to those in LiH. Our density functional theory calculations indicate that Li atoms transfer their electrons to both H and Tt atoms. Tt atoms within the Tt-Tt chain are bonded covalently. The electronic density of states reveals that both hydrides exhibit metallic behavior. The observed vibrational spectra of these hydrides are in good overall agreement with the calculated phonon modes. There is evidence of dispersion induced splitting in the optical phonon peaks that can be ascribed to the coupling of H vibrations within the Li6-octahedra layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.