Abstract

The algebraic difference between the average neutron lifetime (l) and the average generation time (g), referred to as the excess time E (= l − g), is shown to be a useful parameter giving physical insight into the degree of utilization of neutrons toward a chain reacting process in a complicated fissionable system. It can be used to support physical arguments in checking the validity of complex computer results as well as to give some rationale as to what results to expect in these calculations. The concept is applied to the classic criticality case of dry or wet storage of separated fuel assemblies in a variable density hydrogenous moderator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.