Abstract

At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.