Abstract
Competitive economic indicators for fast-neuron power reactors can be achieved with high coefficients of fuel burnout, which requires remarkable enhancement of radiation resistance of fuel pin claddings. Nowadays, low-activation vanadium alloys are projected as promising fuel cladding materials in view of their high radiation and thermal resistance in wide temperature and damage dose ranges. Neutron diffraction and small-angle neutron scattering are employed to study the microstructure of the V-4Ti-4Cr alloy subjected to irradiation with fast neutrons in the fluence range up to 1·1020 cm−2. Minor phases precipitated in the system are structurally characterized. The applicability and prospects of neutron diffraction methods in terms of studying the radiation behavior of this kind of alloys are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Diagnostics, Resource and Mechanics of materials and structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.