Abstract

We consider the sector of Horndeski's gravity characterized by the coupling between the kinetic scalar field term and the Einstein tensor. We numerically construct neutron star configurations where the external geometry is identical to the Schwarzschild metric but the interior structure is considerably different from standard general relativity. We constrain the only parameter of this model from the requirement that compact configurations exist, and we argue that solutions less compact than neutron stars, such as white dwarfs, are also supported. Therefore, our model provides an explicit modification of general relativity that is astrophysically viable and does not conflict with Solar System tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.