Abstract

We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_\odot-10M_\odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperature nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($\chi_{\rm BH}\gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($T\lesssim 1\,{\rm MeV}$), unbound, neutron-rich material ($M_{\rm ej}\sim 0.05M_\odot-0.20M_\odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{\rm max}\sim 15\,{\rm MeV}$) with typical neutrino luminosity $L_\nu\sim 10^{53}\,{\rm erg/s}$, and a cooler tidal tail. After a short period of rapid protonization of the disk lasting $\sim 10\,{\rm ms}$, the accretion disk cools down under the combined effects of the fall-back of cool material from the tail, continued accretion of the hottest material onto the black hole, and neutrino emission. As the temperature decreases, the disk progressively becomes more neutron-rich, with dimmer neutrino emission. This cooling process should stop once the viscous heating in the disk (not included in our simulations) balances the cooling. These mergers of neutron star-black hole binaries with black hole masses $M_{\rm BH}\sim 7M_\odot-10M_\odot$ and black hole spins high enough for the neutron star to disrupt provide promising candidates for the production of short gamma-ray bursts, of bright infrared post-merger signals due to the radioactive decay of unbound material, and of large amounts of r-process nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.