Abstract

The observation of the x-ray pulse profile emitted by hotspots on the surface of neutron stars offers a unique tool to measure the bulk properties of these objects, including their masses and radii. The x-ray emission takes place at the star's surface, where the gravitational field is strong, making these observations an incise probe to examine the curvature of spacetime generated by these stars. Motivated by this and the upcoming data releases by x-ray missions, such as NICER (Neutron star Interior Composition Explorer), we present a complete toolkit to model pulse profiles of rotating neutron stars in scalar-tensor gravity. We find that in this class of theories the presence of the scalar field affects the pulse profile's overall shape, producing strong deviations from the General Relativity expectation. This finding opens the possibility of potentially using x-ray pulse profile data to obtain new constraints on scalar-tensor gravity, if the pulse profile is found to be in agreement with General Relativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.