Abstract

The influences of nucleon coupling constants on the neutrino scatting and cooling properties of neutron stars are investigated. The results in the GM1, GPS250 and NL-SH parameter sets show that the magnitude of the neutrino emissivity and density ranges where the dUrca process of nucleons is allowed differ obviously between the three parameter sets in nucleon-only and hyperonic matter. Furthermore, the neutron stars in the GPS250 set cool very quickly, whereas those in the NL-SH set cool slowly. The cooling rate of the former can be almost three times more that of the latter. It can be concluded that the stiffer the equation of state, the slower the corresponding neutron stars cool. The hyperon Λ makes neutrino emissivity due to the direct Urca process of nucleons lower compared with nucleon-only matter, and postpones the dUrca process with muons. However, these Λ effects are relatively weaker in the GPS250 set than in the GM1 set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.