Abstract

Spin current -- a flow of the spin degree of freedom in matter -- has vital importance in spintronics. Propagation of the spin current ranges over a whole momentum space; however, generated spin currents are mainly detected in the long-wavelength limit. To facilitate practical uses of spintronics and magnonics, microscopic understanding of the spin current is necessary. We here address yttrium iron garnet, which is a well-employed ferrimagnet for spintronics, and review {\it in re} the momentum- and energy-resolved characteristics of its magnetism. Using {\it unpolarized} neutrons, we refined its detailed crystal and magnetic structure, and examined magnetic excitations through four decades (10~$\mu$eV-100~meV) using chopper spectrometers in J-PARC, Japan. We also measured mode-resolved directions of the precessional motion of the magnetic moment, i.e., magnon polarization, which carries the spin current in insulators through {\it polarized} neutron scattering, using a triple-axis spectrometer in ILL, France. The magnon polarization is a hitherto untested fundamental property of magnets, affecting the thermodynamic properties of the spin current. Our momentum- and energy-resolved experimental findings provide an intuitive understanding of the spin current and demonstrate the importance of neutron scattering techniques for spintronics and magnonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.