Abstract

Inelastic neutron scattering (INS) study on breathing pyrochlore antiferromagnet Ba3Yb2Zn5O11 is presented. Observed crystalline electric field (CEF) excitations are explained by a Hamiltonian of Kramers ion Yb3+ of which the local symmetry exhibits C3v point group symmetry. The magnetic susceptibility is consistently reproduced by the energy scheme of the CEF excitations. The INS spectra in the low-energy range are quantitatively explained by spin-1/2 single-tetrahedron model having XXZ anisotropy and Dzyaloshinskii-Moriya interaction. This model has a two-fold degeneracy of the lowest-energy state per tetrahedron and well reproduces the bulk properties at T ≥ 0.5K. At lower temperatures, however, we observe a broad maximum in the heat capacity around 63 mK, demonstrating that a unique quantum ground state is selected due to extra perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.