Abstract

Motivated by recent synthesis of the hyper-honeycomb material $\beta$-$\mathrm{Li_2 Ir O_3}$, we study the dynamical structure factor (DSF) of the corresponding 3D Kitaev quantum spin-liquid (QSL), whose fractionalised degrees of freedom are Majorana fermions and emergent flux-loops. Properties of this 3D model are known to differ in important ways from those of its 2D counterpart -- it has finite-temperature phase transition, as well as distinct features in Raman response. We show, however, that the qualitative behaviour of the DSF is broadly dimension-independent. Characteristics of the 3D DSF include a response gap even in the gapless QSL phase and an energy dependence deriving from the Majorana fermion density of states. Since the majority of the response is from states containing a single Majorana excitation, our results suggest inelastic neutron scattering as the spectroscopy of choice to illuminate the physics of Majorana fermions in Kitaev QSLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.