Abstract

With the discovery of magnetic ordering in RbMnF3, this unique antiferromagnetic system was recognized as a prime case for a test of conventional spin-wave theory (CSWT) because of its negligibly small anisotropy and its simple, cubic structure. CSWT predicts a simple T2 power-law fall-off of the sublattice magnetization. Yet to this day, no stringent tests have been made of this prediction. Seiden [(Phys. Lett. 28 A, 239 (1968)] deduced a T3 low-temperature behavior on the basis of antiferromagnetic resonance measurements, concluding that CSWT was not supported. We have recently carried out neutron scattering measurements of both single-crystal and powdered samples of RbMnF3 in order to test for CSWT, Seiden’s result, and two other more recent semiempirical spin-wave schemes, and we present an analysis of the results. Measurements in the critical regime gave values of the critical exponent β and of TN that are in agreement with previous measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call