Abstract

Ba$_2$Cu$_3$O$_4$Cl$_2$ has two inter-penetrating square Cu sublattices, one with square root 2 times the in-plane spacing of the other. Isotropic magnetic interactions between the two sublattices are completely frustrated. Quantum fluctuations resolve the intrinsic degeneracy in the ordering direction of the more weakly coupled sublattice in favor of collinear ordering. We present neutron scattering and magnetization studies of the magnetic structure when the Cu ions are substituted with Co. The Co spins create new magnetic interactions between the two sublattices. The ordering behavior of both Cu sublattices is retained largely unmodified. Between the phase transitions of the two sublattices spin-glass behavior is observed. Magnetization results show a strong enhancement to the ferromagnetic aspect of the magnetic structure. The combination of glassy behavior and large moments strongly suggest that the Co moments induce the formation of local canted states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.