Abstract

Neutron Resonance Transmission Analysis (NRTA) is a spectroscopic technique which uses the resonant absorption of neutrons in the epithermal range to infer the isotopic composition of an object. This spectroscopic technique has relevance in many traditional fields of science and nuclear security. NRTA in the past made use of large, expensive accelerator facilities to achieve precise neutron beams, significantly limiting its applicability. In this work we describe a series of NRTA experiments where we use a compact, low-cost deuterium-tritium (DT) neutron generator to produce short neutron beams (2.6~m) along with a $^6$Li-glass neutron detector. The time-of-flight spectral data from five elements -- silver, cadmium, tungsten, indium, and $^{238}$U -- clearly show the corresponding absorption lines in the 1-30 eV range. The experiments show the applicability of NRTA in this simplified configuration, and prove the feasibility of this compact and low-cost approach. This could significantly broaden the applicability of NRTA, and make it practical and applicable in many fields, such as material science, nuclear engineering, and arms control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.