Abstract

We performed a preliminary study of neutron resonance absorption imaging to investigate the spatial distribution of constituent elements in borosilicate glasses containing simulated high-level radioactive waste, in which elemental inhomogeneities affect the physical and chemical stabilities of the glass. Dips generated by the resonance absorptions of Rh, Pd, Na, Gd, Cs, and Sm were observed in the neutron transmission spectra of the glass samples. The spatial distributions of these elements were obtained from the neutron transmission images at the resonance energies. The distributions of Rh and Pd visualized the sedimentation of these platinum group elements. In contrast, the lanthanides (Gd and Sm) and Cs were uniformly dispersed. These results show that neutron resonance absorption imaging is a promising tool for characterizing borosilicate glasses and investigating the vitrification mechanism of high-level radioactive waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.