Abstract

The highly radiosensitive immature oocytes of mice were irradiated in vivo with graded doses of 252Cf fission radiation, 0.43- or 15-MeV neutrons, or 60Co gamma rays. Comparisons of oocyte survival for neutrons and for gamma rays demonstrate that neutron RBEs for the killing of these important cells do not reach the high values (30-50 or more) at low doses observed for several other biological end points. Rather, neutrons differ little in effectiveness from gamma rays in killing these extremely sensitive murine oocytes. For 0.43-MeV neutrons, RBEs obtained from fitted survival curves reach only 1.7 at 0.1 rad. For 15-MeV neutrons, they are not significantly different from 1 at any dose tested (lowest, 4.5 rad). For 252Cf fission neutrons (E = 2.15 MeV), RBEs are intermediate between those for 0.43- and 15-MeV neutrons. For all neutron energies tested, the RBEs are particularly low in the juvenile period, a time when murine immature oocytes are especially radiosensitive. With exposure just prior to birth, however, when these cells are much less easily killed, higher, more usual RBEs are found. The minimum size of the lethality target in mouse immature oocytes, estimated from the inactivation constant for 0.43-MeV neutrons and microdosimetric values, is larger than the nucleus but not larger than the cell. This and related analytical considerations suggest that the hypersensitive target in these particular oocytes is the plasma membrane, a finding which is in excellent accord with results from other experiments using different, contrasting radiations and dose deliveries (accelerated Si14+ ions, gamma rays, and beta rays from 3HOH compared with those from [3H]thymidine).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.