Abstract

Soft processors are often used within field-programmable gate array (FPGA) designs in radiation hazardous environments. These systems are susceptible to single-event upsets (SEUs) that can corrupt both the hardware configuration and software implementation. Mitigation of these SEUs can be accomplished by applying triple modular redundancy (TMR) techniques to the processor. This article presents fault injection and neutron radiation results of a Linux-capable TMR VexRiscv processor. The TMR processor achieved a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$10\times $ </tex-math></inline-formula> improvement in SEU-induced mean fluence to failure with a cost of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4\times $ </tex-math></inline-formula> resource utilization. To further understand the TMR system failures, additional post-radiation fault injection was performed with targets generated from the radiation data. This analysis showed that not all the failures were due to single-bit upsets, but potentially caused by multibit upsets, nontriplicated IO, and unmonitored nonconfiguration RAM (CRAM) SEUs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call