Abstract

The fusion energy is attractive as an energy source because the fusion will not produce CO2 or SO2 and so fusion will not contribute to environmental problems, such as particulate pollution and excessive CO2 in the atmosphere. The fusion reaction does not produce radioactive nuclides and it is not self-sustaining, as is a fission reaction when a critical mass of fissionable material is assembled. Since the fusion reaction is easily and quickly quenched the primary sources of heat to drive such an accident are heat from radioactive decay and heat from chemical reactions. Both the magnitude and time dependence of the generation of heat from radioactive decay can be controlled by proper selection and design of materials. Nickel (Ni) is an important structural material in fusion (and also fission) reactor technologies and many other fields. So, the working out the reaction cross sections of the Ni isotopes is very important for selection of the fusion materials. In this study, 58Ni(p,xn), 58Ni(p,xp), 60Ni(p,xp), 60Ni(p,xα) and 62Ni(p,xp) reactions have been investigated using nuclear reaction models. And also the 58Ni(p,xn) reaction has been calculated through a method of offered by Tel et al. The calculated results are discussed and compared with the experimental data taken from EXFOR database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.