Abstract
AbstractExperimental and simulation results of a spherical glow discharge for a portable neutron source are presented. The experimental device is a 45‐cm‐diameter, 31‐cm‐high stainless‐steel cylindrical chamber, in which a spherical mesh‐type anode 30 cm in diameter is installed. The spherical grid cathode consists of 2.0‐mm‐diameter stainless‐steel wire, which is made into an open spherical grid of 5‐cm diameter. The system is maintained at a constant pressure of 1 to 15 mTorr by feeding hydrogen or deuterium gas. The basic characteristics of breakdown voltages versus pressure and electrostatic potential profiles were measured for hydrogen discharge. Using deuterium, a steady‐state neutron production of 104 s–1 was observed at a discharge of 40 kV, 2 mA. Motions of ions and electrons in the device were simulated by using a particle code, which is one‐dimensional in coordinate system and two‐dimensional in velocity space. It was confirmed by both the measurement and simulation that a virtual anode is formed in the central part inside the grid cathode. © 2001 Scripta Technica, Electr Eng Jpn, 135(2): 1–8, 2001
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.