Abstract

The use of transparent test/source masses can benefit future measurements of Newton’s gravitational constant G. Such transparent test mass materials can enable nondestructive, quantitative internal density gradient measurements using optical interferometry and allow in-situ optical metrology methods to be realized for the critical distance measurements often needed in a G apparatus. To confirm the sensitivity of such optical interferometry measurements to internal density gradients it is desirable to conduct a check with a totally independent technique. We present an upper bound on possible internal density gradients in lead tungstate (PbWO4) crystals using a Talbot-Lau neutron interferometer on the Cold Neutron Imaging Facility at NIST. We placed an upper bound on a fractional atomic density gradient in two PbWO4 test crystals of cm−1. This value is about two orders of magnitude smaller than required for G measurements. We discuss the implications of this result and of other nondestructive methods for characterization of internal density inhomogeneties which can be applied to test masses in G experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.