Abstract

We present a new, efficient and robust method for computing scalar wave propagation for those cases in which Dirichlet boundary conditions play a key role. The algorithm is versatile and it allows to treat reflection, diffraction, waveguiding regime, scattering and free propagation. The analysis is based upon a representation for a slow neutron wavefunction in terms of the incoming wave and integrals, along the boundaries of an unbounded domain, involving a Green's function and certain auxiliary functions (warranting the Dirichlet boundary conditions). The analysis involves Fourier and Hilbert transforms defined only on the boundaries and enables to exploit the detailed advantages of Fast Fourier Transform (FFT) to perform simulations. Our algorithm proves to be highly effective both in terms in running time and memory load, compared to those based on Finite Differences Methods (FDM). Moreover, since the value of the field at each point may be calculated independently, this algorithm allows parallelization in a natural way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.