Abstract

We study the equation of state of neutron matter at finite temperature based on two- and three-nucleon interactions derived within chiral effective field theory to next-to-next-to-next-to-leading order. The free energy, pressure, entropy, and internal energy are calculated using many-body perturbation theory including terms up to third order around the self-consistent Hartree-Fock solution. We include contributions from three-nucleon interactions without employing the normal-ordering approximation and provide theoretical uncertainty estimates based on an order-by-order analysis in the chiral expansion. Our results demonstrate that thermal effects can be captured remarkably well via a thermal index and a density-dependent effective mass. The presented framework provides the basis for studying the dense matter equation of state at general temperatures and proton fractions relevant for core-collapse supernovae and neutron star mergers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call