Abstract
Nanocrystalline 3C-SiC is irradiated by neutron flux ([Formula: see text][Formula: see text]n/cm2s) up to 20[Formula: see text]h in the TRIGA Mark II type research reactor. At the first stage, silicon carbide nanoparticles were analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM) devices before and after neutron irradiation. Amorphous transformation and agglomeration effects on the permittivity of nanocrystalline silicon carbide (3C-SiC) were comparisons investigated before and after neutron irradiation. Dielectric spectroscopies of nanocrystalline 3C-SiC have been conducted at the frequency ranges of 0.1[Formula: see text]Hz–2.5[Formula: see text]MHz and temperature ranges of 100–400[Formula: see text]K. Real and imaginary parts of the permittivity of the nanomaterial were analyzed for comparison before and after neutron irradiation. Neutron irradiation increased dopant elements concentration in the nanocrystalline 3C-SiC particles, and that directly affects dielectric polarization and increased permittivity. All the mechanisms of the observed effects are given in the work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.