Abstract

The hydrogen concentration and distribution at both sides of the burst opening of cladding tubes used in three QUENCH-LOCA simulation bundle experiments were investigated by means of neutron radiography and tomography. The quantitative correlation between the total macroscopic neutron cross-section and the atomic number density ratio between hydrogen and zirconium was determined by testing calibration specimens with known hydrogen concentrations. Hydrogen enrichments located at the end of the ballooning zone of the tested tubes were detected in the inner rods of the test bundles. Nearly all of the peripheral claddings exposed to lower temperatures do not show such enrichments. This implies that under the conditions investigated a threshold temperature exists below which no hydrogen enrichments can be formed. In order to understand the hydrogen distribution a model was developed describing the processes occurring during loss of coolant accidents after rod burst. The general shape of the hydrogen distributions with a peak each side of the ballooning region is well predicted by this model whereas the absolute concentrations are underestimated compared to the results of the neutron tomography investigations. The model was also used to discuss the influence of the alloy composition on the secondary hydrogenation. Whereas the relations for the maximal hydrogen concentrations agree well for one and the same alloy, the agreement for tests with different alloys is less satisfying, showing that material parameters such as oxidation kinetics, phase transition temperature for the zirconium oxide, and yield strength and ductility at high temperature have to be taken into account to reproduce the results of neutron imaging investigations correctly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.