Abstract

Neutron imaging of Inertial Confinement Fusion (ICF) targets provides a powerful tool for understanding the implosion conditions of deuterium and tritium filled targets at Mega-Joule/Tera-Watt scale laser facilities. The primary purpose of imaging ICF targets at that National Ignition Facility (NIF), sited at Lawrence Livermore National Laboratory, Livermore, California, is to determine the asymmetry of the fuel in an imploded ICF target. The image data are then combined with other nuclear information to gain insight into the laser and radiation conditions used to drive the target. This information is requisite to understanding the physics of Inertial Confinement Fusion targets and provides a failure mode diagnostic used to optimize the conditions of experiments aimed at obtaining ignition. We present an overview of neutron aperture imaging including a discussion of image formation and reconstruction, requirements for the future (NIF) neutron imaging systems, a description of current imaging system capabilities, and ongoing work to affect imaging systems capable of meeting future system requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call