Abstract

The neutron flux distribution on the wall of a toroidal CTR device with strongly elongated cross section is calculated. On the inner and outer cylindrical walls (belt-pinch device) the flux distribution has a plateau region with a half-width equal to about the height of the plasma. The maximum flux is found on the outer cylinder and in the symmetry plane (z0=0). The neutron flux asymmetry and reductionη of the mean wall loading are determined. For standard data anη of 57% is computed. This is mainly due to the flux profiles on the cylindrical walls and does not depend sensitively on the toroidal curvature. For standard parameters the inner cylinder absorbs 22.6%, the outer cylinder 68.6% and the end plates together 8.8% of the total neutron emission. The corresponding values for a straight device with the same coil and plasma cross section are 44%, 44% and 12%. A reduction of toroidal curvature diminishes flux asymmetry between the inner and outer cylinders. The maximum flux and minimumη-value are obtained at a large torus radius equal to two times the coil width. For small aspect ratios (RtW0.5) the neutron flux through the inner cylinder becomes so small that its interior may be filled with a material other than a blanket material, e.g. with an iron core.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call