Abstract

The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(βN∼4) transiently and higher stored energy region is obtained by increased total heating power (∼6MW) and plasma current (Ip up to 1MA for ∼10s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100keV with 4.5MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n)3He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 1013–1014/s and 1m2 at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call