Abstract

Abstract In this article, we report on the magnetic structure of DyFe11Ti and its thermal evolution as probed by neutron powder diffraction. A thermodiffraction technique was used to follow the temperature dependence of the magnetic moments, as well as their orientation. The Dy and Fe moments were coupled to each other in an antiparallel manner to form a ferrimagnet, where the easy magnetization direction at 2 K was the [110] axis in the basal (a, b) plane. This magnetic structure underwent two successive spin reorientation phenomena with increasing temperature. A large Dy magnetic moment of 9.7 Bohr magneton (μB) was obtained at low temperatures, and the magnitude decreased rapidly to 7.5μB at 200 K. The largest Fe magnetic moment was observed on the Fe 8i position. A ThMn12-type crystal structure was preserved in the studied temperature range, despite the large changes of the magnetic structure. A sharp tilt was observed at the first-order spin reorientation, TSR1; the angle between the easy magnetization axis and the crystal c axis was reduced from 90° at 2 K to about 20° at 200 K (where c is the easy axis above 200 K); and the Dy and Fe magnetic moments maintained an antiparallel coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.