Abstract
Neutron-depolarization and small-angle neutron-scattering (SANS) measurements were performed to obtain some magnetic information in various spatial scales on the reentrant-spin-glass state of ${\mathrm{Ni}}_{77}$${\mathrm{Mn}}_{23}$. The wavelength-dependent neutron polarization in the magnetic fields offered some information about the temperature-dependent magnetic-domain-wall motion and the magnetization rotation in domains, i.e., (1) the domain-wall motion decreases with decreasing temperature, and (2) the magnetization in each domain shows a rigid rotation at low temperatures and a dissipative nature at higher temperatures when applying a magnetic field. The SANS intensity peak at a finite momentum transfer q that appeared in the magnetic fields indicates the formation of a modulated structure of transverse spin components in the domain. The spin structure was interpreted as vortexlike so as to obtain a consistent interpretation about the low-temperature behavior of the period of oscillatory neutron polarization as a function of wavelength. The field and temperature dependences of SANS intensity were well interpreted in terms of the vortex spin structure. Finally, we had a picture that the magnetization process in the reentrant state is characterized by the nature of the domain-wall motion and the magnetization rotation that strongly correlates with the spin-modulated structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.