Abstract

In this study, the SCALE/TRITON code (based on deterministic method) and the Serpent 2 code (based on Monte Carlo method) were utilized to prepare the group constants of the pressurized water reactor (PWR) mixed-oxide (MOX) fuel assemblies for transient analyses of PWR MOX fueled cores in normal operation and control rod ejection accident condition with 3D reactor kinetics codes. The PWR MOX fuel assemblies were modeled with TRITON and Serpent, and their infinite neutron multiplication factors (k-inf) versus burnup and respective two-group neutron cross sections were calculated and compared against the available benchmark data obtained with the HELIOS code. The comparative results generally show a good agreement between TRITON and Serpent with HELIOS within 643 pcm for the k-inf values and within 5% for the two-group neutron cross sections. Therefore, it indicates that the TRITON and Serpent models developed herein for the PWR MOX fuel assemblies can be applied to group constant generation to be further used in transient analyses of PWR MOX fueled cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.