Abstract

High performed new heavy concrete samples were designed and produced that absorption parameters were determined for gamma and neutron radiation by using Monte Carlo Simulation program GEANT4 code. In the sample production, many different materials were used such as; chromite (FeCr2O4), wolframite [(20Fe,80Mn) WO4], hematite (Fe2O3), titanium oxide (TiO2), aluminum oxide (Al2O3), limonite (FeO (OH) nH2O), barite (BaSO4), materials. Furthermore, calcium aluminate cement (CAC) was utilized for high temperature resistant. In the current study, five different new heavy concrete samples were produced then physical and chemical strength of them tested. High-temperature-resistant tests were made at 1000°C and good resistance against high temperature was observed. Neutron equivalent dose measurements were made for by using 4.5 MeV energy 241Am-Be fast neutron source. Results compared with paraffin and conventional concrete. It was found that the new heavyweight concretes had the better absorption capacity than paraffin and conventional concrete. Gamma radiation absorption measurements also were carried out at the energies of 160, 276, 302, 356, and 383 keV by using 133Ba point radiation source. It has been suggested that the new produced concretes can be used for radiation safety in the nuclear applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call