Abstract

Dy2TiO5 powders were synthesized by molten salt and solid-state methods. The influences of molten medium on phase compositions and microstructures were analyzed. The addition of molten salt lowered significantly the synthesis temperature and resulted in uniform powders. Green bodies compacted from the prepared powders were pressureless sintered at 1600°C. Sinterability, mechanical properties and neutron absorption performance of the sintered pellets were studied. Results showed that molten salt synthesis resulted in materials with higher fracture toughness and bending strength, excellent hardness and neutron adsorption performance compared to the solid-state process. The neutron absorption rate reached 86.6% for 8cm thick pellets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.