Abstract

Neutron activation analysis (NAA), based on the comparator method, has the potential to fulfill the requirements of a primary ratio method as defined in 1998 by the Comité Consultatif pour la Quantité de Matière — Métrologie en Chimie (CCQM, Consultative Committee on Amount of Substance — Metrology in Chemistry Studies of Neutron Activation Analysis (NAA) have been carried out on different Egyptian building material samples. The technique of neutron activation analysis is based on the measurement of radiation released by the decay of radioactive nuclei formed by neutron irradiation of the material. The most suitable source of neutrons for such an application is usually a research reactor. The samples that can be analyzed with this method stem from a number of different fields, including medicine, nutrition, biology, chemistry, forensics, the environment and mining. Neutron activation analysis can be performed in a variety of ways. This depends on the element and the corresponding radiation levels to be measured, as well as on the nature and the extent of interference from other elements present in the sample. Most of the methods used are non-destructive, based on the detection of gamma radiation emitted by the irradiated material after or during the irradiation. Next to education and training, neutron activation analysis is the most widely used application of research reactors. Almost any reactor operating at 10-30 kilowatt of thermal power is capable of providing a sufficient neutron flux to irradiate samples for selective applications of this analysis technique. Another method of NAA by using two Am-Be isotopic neutron sources of activity 5 Ci were used in this investigation. The accomplished gamma rays were measured using 70 % HPGe spectrometer. This work demand to estimate the elements contained in cement products and its quality control. X-ray Fluorescence (XRF) measurements were done for confirming our results, and for determining the average neutron flux of 3.7× 103 n/cm2sec. The Natural radioactivities of these samples were measured before the analysis to know the background level of 40K, 238U and232Th nuclei. The results investigated that NAA agree with the results of XRF and the world range of the cement concentration of the essential elements Ca, Al, Na, Fe, Mn, V, Sr and Si.

Highlights

  • A several studies [1, 2] were leading to the launching of neutron activation analysis

  • The application of neutron activation analysis (NAA) to investigate archaeological problems began in the mid-1950s, when scientists at Brookhaven National Laboratory (Sayre and Dodson 1957) recognized its potential for relating artifacts to source materials through their chemical signatures

  • With respect to the time of measurement, NAA falls into two categories: (1) prompt gamma-ray neutron activation analysis (PGNAA), where measurements take place during irradiation, or (2) delayed gamma-ray neutron activation analysis (DGNAA), where the measurements follow radioactive decay

Read more

Summary

1- INTRODUCTION

A several studies [1, 2] were leading to the launching of neutron activation analysis. Neutron activation analysis was discovered in 1936 when Hevesy and Levi found that samples containing certain rare earth elements became highly radioactive after exposure to a source of neutrons. From this observation, they quickly recognized the potential of employing nuclear reactions on samples followed by measurement of the induced radioactivity to facilitate both qualitative and quantitative identification of the elements present in the samples. With respect to the time of measurement, NAA falls into two categories: (1) prompt gamma-ray neutron activation analysis (PGNAA), where measurements take place during irradiation, or (2) delayed gamma-ray neutron activation analysis (DGNAA), where the measurements follow radioactive decay. Table (1) the natural radionuclides, their gamma lines used and their intensities [11]

Parent Nuclide
Nuclide Used
This study
Findings
5- REFERENCES:
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call