Abstract

Observations of the neutrino burst from Supernova 1987A by water Cherenkov detectors (KAMIOKANDE II, IMB) and liquid scintillator detectors (Baksan, Mont Blanc) are reviewed. It is shown that neutrino signal from SN 1987A was observed. There are 24 events in three detectors (KAMIOKANDE II, IMB, Baksan) recorded at 7:35 UT. The average properties of the signal (effective neutrino temperature, total energy of neutrino emission, burst duration) are consistent with the general theoretical description of supernova explosions. Special attention is concentrated on individual characteristics of the signals detected and the available discrepancies of the model estimates. Time profile of the neutrino burst, estimates of effective neutrino temperatures and total neutrino energies, angular distributions of the events are discussed. These properties point out, probably, a more compound picture of the phenomenon. The more detail analysis of the experimental data is needed and all possibilities must be at least considered. Based upon the Baksan observations, an upper limit of 0.35 core collapse in the Galaxy per year (90% C.L.) is shown.KeywordsSupernova ExplosionNeutrino EmissionNeutrino EventRecoil ElectronHigh Energy TailThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.