Abstract

Based on parity violation in the weak interaction and evidences from neutrino oscillation, a natural choice is that neutrinos may be superluminal particles with tiny mass. To keep causality for Superluminal particles, a kinematic time under a non-standard form of the Lorentz transformation is introduced. A Dirac-type equation for Superluminal neutrinos is further investigated, and its solution is brief discussed. This equation can be written in two spinor equations coupled together via tiny mass while respecting maximum parity violation. As a consequence, parity violation implies that the principle of relativity is violated in the weak interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.