Abstract
We present a formalism for calculating nuclear matrix elements of double-$\ensuremath{\beta}$ decay within the framework of the microscopic interacting boson model. We calculate Fermi, Gamow-Teller, and tensor matrix elements in the decay of Ge-Se-Mo-Te-Xe-Nd-Sm and compare our results with those of the shell-model (SM) and of the quasiparticle random-phase approximation (QRPA). Our results are in agreement with QRPA. We discuss simple features of the matrix elements and give a formula that allows one to estimate matrix elements in terms of the number of valence proton and neutron pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.