Abstract

Nuclear double beta decay provides an extraordinarly broad potential to search for beyond-standard-model physics. The occurrence of the neutrinoless decay (0νββ) mode has fundamental consequences: first total lepton number is not conserved, and second, the neutrino is a Majorana particle. Further the effective mass measured allows to put an absolute scale of the neutrino mass spectrum. In addition, double beta experiments yield sharp restrictions also for other beyond standard model physics. These include SUSY models (R-parity breaking and conserving), leptoquarks (leptoquark-Higgs coupling), compositeness, left-right symmetric models (right-handeld W boson mass), test of special relativity and of the equivalence principle in the neutrino sector and others. First evidence for neutrinoless double beta decay was given in 2001, by the HEIDELBERG-MOSCOW experiment. The HEIDELBERG-MOSCOW experiment is the by far most sensitive 0νββ experiment since more than 10 years. It is operating 11kg of enriched 76Ge in the GRAN SASSO Underground Laboratory. The analysis of the data taken from 2 August 1990–20 May 2003, is presented here. The collected statistics is 71.7 kg y. The background achieved in the energy region of the Q value for double beta decay is 0.11 events/ kg y keV. The two-neutrino accompanied half-life is determined on the basis of more than 100 000 events to be (1.74. −0.16 +0.18 ) × 1021 years. The confidence level for the neutrinoless signal is 4.2 σ level (more than 5 σ in the pulse-shape-selected spectrum). The half-life is \(T_{1/2}^{0v}\)=(1.19 −0.23 +0.37 ) × 1025 years. The effective neutrino mass deduced is (0.2–0.6) eV (99.73% c.l.), with the consequence that neutrinos have degenerate masses, and consequently still considerably, and contribute to hot dark matter in the Universe. The sharp boundaries for other beyond SM physics, mentioned above, are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Some discussion is given on future ββ experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.