Abstract

Testing, in a non-trivial, model-independent way, the hypothesis that the three-massive-neutrinos paradigm properly describes nature is among the main goals of the current and the next generation of neutrino oscillation experiments. In the coming decade, the DUNE and Hyper-Kamiokande experiments will be able to study the oscillation of both neutrinos and antineutrinos with unprecedented precision. We explore the ability of these experiments, and combinations of them, to determine whether the parameters that govern these oscillations are the same for neutrinos and antineutrinos, as prescribed by the CPT-theorem. We find that both DUNE and Hyper-Kamiokande will be sensitive to unexplored levels of leptonic CPT-violation. Assuming the parameters for neutrino and antineutrinos are unrelated, we discuss the ability of these experiments to determine the neutrino and antineutrino mass-hierarchies, atmospheric-mixing octants, and CP-odd phases, three key milestones of the experimental neutrino physics program. Additionally, if the CPT-theorem is violated in nature in a way that is consistent with all present neutrino and antineutrino oscillation data, we find that DUNE and Hyper-Kamiokande have the potential to ultimately establish CPT-invariance violation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.