Abstract
Cosmic-ray interactions with the atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale1. The Earth is not a fully transparent medium for neutrinos with energies above a few TeV, as the neutrino–nucleon cross-section is large enough to make the absorption probability non-negligible2. Since absorption depends on energy and distance travelled, studying the distribution of the TeV atmospheric neutrinos passing through the Earth offers an opportunity to infer its density profile3–7. This has never been done, however, due to the lack of relevant data. Here we perform a neutrino-based tomography of the Earth using actual data—one-year of through-going muon atmospheric neutrino data collected by the IceCube telescope8. Using only weak interactions, in a way that is completely independent of gravitational measurements, we are able to determine the mass of the Earth and its core, its moment of inertia, and to establish that the core is denser than the mantle. Our results demonstrate the feasibility of this approach to study the Earth’s internal structure, which is complementary to traditional geophysics methods. Neutrino tomography could become more competitive as soon as more statistics is available, provided that the sources of systematic uncertainties are fully under control. Geophysical properties of the Earth’s interior have been inferred by looking at the absorption of neutrinos as they pass through our planet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.