Abstract

The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q2 ≲ few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies Eν up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSFν approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASERν, SND@LHC, and the Forward Physics Facility. The NNSFν determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.