Abstract

Cosmology and neutrino physics have converged into a recent discovery era. The success of the standard model of cosmology in explaining the cosmic microwave background and cosmological large-scale structure data allows for the possibility of measuring the absolute neutrino mass and providing exquisite constraints on the number of light degrees of freedom, including neutrinos. This sensitivity to neutrino physics requires the validity of some of the assumptions, including general relativity, inflationary cosmology, and standard thermal history, many of which can be tested with cosmological data. This sensitivity is also predicated on the robust handling of systematic uncertainties associated with different cosmological observables. We review several past, current, and future measurements of the cosmic microwave background and cosmological large-scale structure that allow us to do fundamental neutrino physics with cosmology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call