Abstract
The possibility of generating neutrino mass through see-saw mechanism involving U(1) chiral Peccei-Quinn and scale symmetries breakdown is discussed. We consider a generic scale invariant model which has three Majorana fermions and a complex scalar singlet, which might be the one responsible for an invisible axion, and we perform a summation of all leading-logarithmic radiative corrections to the tree level potential. The effective potential so obtained is stable and drives the scalar field to a nonzero vacuum expectation value according to the Coleman-Weinberg mechanism. As a result, right-handed neutrinos gain mass at the Peccei-Quinn scale which is suggestive for explaining very light active neutrinos. We illustrate the whole idea with the addition of the standard model, and also a $\mathrm{SU}(3{)}_{L}\ensuremath{\bigotimes}\mathrm{U}(1{)}_{X}$ model in which the subgroup $\mathrm{SU}(2{)}_{L}\ensuremath{\bigotimes}\mathrm{U}(1{)}_{Y}$ is constrained to be broken as an effect of the effective potential. This last model presents electric charge quantization as well.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.