Abstract

The possibility of generating neutrino mass through see-saw mechanism involving U(1) chiral Peccei-Quinn and scale symmetries breakdown is discussed. We consider a generic scale invariant model which has three Majorana fermions and a complex scalar singlet, which might be the one responsible for an invisible axion, and we perform a summation of all leading-logarithmic radiative corrections to the tree level potential. The effective potential so obtained is stable and drives the scalar field to a nonzero vacuum expectation value according to the Coleman-Weinberg mechanism. As a result, right-handed neutrinos gain mass at the Peccei-Quinn scale which is suggestive for explaining very light active neutrinos. We illustrate the whole idea with the addition of the standard model, and also a $\mathrm{SU}(3{)}_{L}\ensuremath{\bigotimes}\mathrm{U}(1{)}_{X}$ model in which the subgroup $\mathrm{SU}(2{)}_{L}\ensuremath{\bigotimes}\mathrm{U}(1{)}_{Y}$ is constrained to be broken as an effect of the effective potential. This last model presents electric charge quantization as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.