Abstract

Neutrino (ν) oscillations during the core collapse and bounce of a supernova (SN) are shown to generate the most powerful detectable gravitational wave (GW) bursts. The SN neutronization phase produces mainly electron (νe) neutrinos, the oscillations of which must take place within a few mean-free paths of their resonance surface located near their neutrinosphere. Here we characterize the GW signals produced by spin-flip oscillations inside the fast-rotating protoneutron star in the SN core. In this novel mechanism, the release of both the oscillation-produced νμ's, ντ's and the spin-flip-driven GW pulse provides a unique emission offset [Formula: see text] for measuring the ν travel time to Earth. As massive ν's get noticeably delayed on its journey to Earth with respect to the GW, they generate over the oscillation transient, the accurate measurement of this time-of-flight delay by SNEWS + LIGO, VIRGO, BBO, DECIGO, etc. can assess the absolute ν mass spectrum straightforwardly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.