Abstract
High-statistics reactor neutrino experiments at medium baselines will probe mass-mixing parameters governing neutrino oscillations at long wavelength, driven by the (δm2, θ12) and at short wavelength, driven by (Δm2, θ13).The interference between these two oscillations will allow to probe the mass hierarchy. The determination of the neutrino mass spectrum hierarchy, however, will require an unprecedented level of detector performance and collected statistics, and the control of several systematics at (sub)percent level. In this work we perform accurate theoretical calculations of reactor event spectra and refined statistical analyses to show that with O(105) reactor events, a typical sensitivity of ∼ 2σ could be achieved by an experiment such as JUNO. We also show the impact of the energy scale and spectrum shape systematics on the determination of the hierarchy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.