Abstract

If a primordial magnetic field (PMF) is present during photon decoupling and afterward, a finite neutrino mass can affect all modes of the CMB. In this work, we expand on earlier studies of the scalar mode effects by constructing the vector and tensor-mode equations in the presence of massive neutrinos and a PMF. We compute the power spectrum of the various modes in an illustrative example and find that the neutrino mass can significantly affect the vector and tensor modes when a PMF exists, while the effects are negligible for no PMF. The most prominent result of the present analysis is the behavior of the EE (grad-like polarization power spectrum) component of the tensor mode at low multipoles. For massive neutrinos the EE mode can become comparable to the observed primary anisotropy. Therefore, if and when the EE mode power spectrum is measured at low multipoles the possibility exists to place a strong constraint on the sum of the neutrino masses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.