Abstract

We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti-)neutrino absorption rates on free nucleons and may thus impact the $r$-process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.