Abstract
A compact accretion disk may be formed in the merger of two neutron stars or of a neutron star and a stellar-mass black hole. Outflows from such accretion disks have been identified as a major site of rapid neutron-capture (r-process) nucleosynthesis and as the source of "red" kilonova emissions following the first observed neutron-star merger GW170817. We present long-term general-relativistic radiation magnetohydrodynamic simulations of a typical postmerger accretion disk at initial accretion rates of M[over ˙]∼1 M_{⊙} s^{-1} over 400ms postmerger. We include neutrino radiation transport that accounts for the effects of neutrino fast flavor conversions dynamically. We find ubiquitous flavor oscillations that result in a significantly more neutron-rich outflow, providing lanthanide and 3rd-peak r-process abundances similar to solar abundances. This provides strong evidence that postmerger accretion disks are a major production site of heavy r-process elements. A similar flavor effect may allow for increased lanthanide production in collapsars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.