Abstract

Neutrino emission drives neutron star cooling for the first several hundreds of years after its birth. Given the low-energy $(\ensuremath{\sim}\text{keV})$ nature of this process, one expects very few nonstandard particle-physics contributions which could affect this rate. Requiring that any new physics contributions involve light degrees of freedom, one of the likely candidates which can affect the cooling process would be a nonzero magnetic moment for the neutrino. To illustrate, we compute the emission rate for neutrino pair bremsstrahlung in neutron-neutron scattering through photon-neutrino magnetic moment coupling. We also present analogous differential rates for neutrino scattering off nucleons and electrons that determine neutrino opacities in supernovae. Employing current upper bounds from collider experiments on the $\ensuremath{\tau}$ magnetic moment, we find that the neutrino emission rate can exceed the rate through neutral current electroweak interaction by a factor 2, signaling the importance of new particle physics input to a standard calculation of relevance to neutron star cooling. However, astrophysical bounds on the neutrino magnetic moment imply smaller effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.