Abstract

Breaking of isotropy and Lorentz boost invariance in the dynamics of second-generation leptons would lead to direction-dependent changes in the lifetimes of charged pions. This would make the intensity of a neutrino beam produced via pion decay a function of the beam orientation. The experimental signature of this phenomenon---sidereal variations in the event rate at a downstream neutrino detector---has already been studied, in searches for Lorentz-violating neutrino oscillations. Existing analyses of MINOS near detector data can be used to constrain the flavor-diagonal Lorentz violation coefficients affecting muon neutrino speeds at roughly the ${10}^{\ensuremath{-}5}$ level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.