Abstract
This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural effects of non-isoelectric perturbations to proteins (i.e., phosphorylation, acetylation, or the binding of the protein to an oligonucleotide or to another charged ligand or protein).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.